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1 Introduction 

A great challenge in particle physics is the numerical solution of quantum field the- 
ories. Analogous problems appear in condensed matter physics as well. Stochastic 
quantization is extremely useful here, because it provides a direct path from the for- 
mal quantization of systems with many degrees of freedom to practical algorithms for 
numerical work. This chapter reviews this connection, leading up to the most popular 
algorithms for quantum chromodynamics. 

Quantum field theories involve an inlinite number of degrees of freedom. This is 
the origin of ultraviolet divergencies. To perform any sensible calculations, the number 
of degrees of freedom must be regulated. This can be done at the level of stochastic 
differential equations [l], but for numerical computations one uses lattice field theory 
instead. The fields of continuous space-time are replaced by aggregate, or “block” fields, 
on the sites or links of a lattice [Z]. For a recent review, see ref. [3]. If the lattice has 
a finite volume, lattice field theory is a quantum mechanical system with a large but 
finite number of degrees of freedom. 

One way to think of numerical simulations of lattice field theory is as Monte Carlo 
integration of the functional integral. An equivalent way is to imagine integrating the 
Langevin equations of stochastic quantization. The different viewpoints have led to 
different algorithms; with the latter approach leading to algorithms based on stochastic 
difference equations. As with deterministic difference equations the general idea is 
to devise finite-difference approximations to the differential equations. However, the 
random noise affects the analysis of step&se errors in several weys. 

A central focus of this chapter is the dynamics of Langevin simulations. The term 
“dynamics” does not mean the dynamics of, say, QCD, but the behavior of the numerical 
algorithms in simulation, or CPU, time. In this language, the numerical algorithm is .s 
dynamical system, whose static behavior is the field theory (e.g. QCD) under study. To 
solve quantum field theories numerically, it is also important to analyze the dynamics 
of the algorithms, because fast dynamics obtain the solution in less computer time. 

This chapter is organized as follows. Sects. 2 and 3 introduce discrete Langevin and 
Fokker-Planck equations for scalar field theory. The analysis is the analog for stochastic 
differential equations of the analysis of step-size errors for deterministic differential 
equations. For local field theories renormalization plays an interesting role [4] and 
the modifications needed for discrete Lang&n equations are presented in sect. 4. It is 
argued that the step-size errors of sects. 2 and 3 do not propagate to physical quantities, 
when renormalization is taken into account. For particle physics applications non- 
Abelian gauge theories are the most important systems; they are treated briefly in 
sect. 5. The analysis of these sections is extended to higher order integration schemes, 
such as Runge-Kutta in sect. 6. The so-called hybrid stochastic algorithm is treated 
here. Sect. 7 explains algorithms for fermions. Sect. 8 discusses several schemes for 
accelerating the Langevin dynamics, i.e. for generating statistically independent lattice 
fields more quickly. Unfortunately, renormalization does not eliminate step-size errors 
in algorithms for fermions or with acceleration, but sect. 9 presents a technique to make 
the algorithms exact. 

Langevin simulations for complex actions are covered in another chapter [5]. 
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2 Discrete Langevin Equations 

Consider scalar lattice field theory on a d-dimensional hypercubic lattice with spacing 
a. The standard action is 

S = ad c (-f@h + V(h)), (2.1) 
D 

where A& := C,,($=+r + $.-,, - Z&)/a’, and a typical potential is 

V(b) = f&P + gqP. (2.2) 

The subscripts z, etc, denote space-time coordinates. 
Stochastic qua&z&ion introduces a “time” parameter t. The fields evolve in t by 

a Langevin equation such as 

&i(t) = -9i(t) - ViS(t)t (2.3) 

where the dot denotes .s derivative with respect to t, the functional derivative 

(2.4) 

and i is a multi-index denoting I and any internal indices. The noise is Gaussian: 

h(t)) = 0, (%.(t)9#(u)) = 2 a(t - u)a-da,. (2.5) 

The lattice spacing has been retained in eqs. (2.4) and (2.5) to determine the dimension 
oft in eq. (2.3). A scalar field has dimension [#] = f(d - 2). Hence, [ViS] = f(d+ 2) = 
[q], whence [t] = -2. 

It can be shown that the t average 

o(4) := &=-/g= dt C-Y+(t)) 

reproduces quantum mechanical vacuum expectation values, i.e. 

o(4) = ;/k&l C’(4)e+. 

(233) 

(2.7) 

In the lingo of numerical simulations, eq. (2.3) generates &field cor@urations according 
to the distribution e-s. 

In a numerical simulation t corresponds to computer time, but the computer can 
only evolve the fields in discrete steps C. A discrete approximation to the Langevin 
requires a finite-difference prescription for the derivative and a regularization of the 
Dime &function. The Euler scheme is the simplest: 

d c f (@(t + 8) - 4(t)) w3) 

in eq. (2.3), and 
1 

qt - u) H -&, 
6 

(2.9) 
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in eq. (2.5). Higher order schemes will be discussed in sect. 6. Writing x = t/E and 
v(x) = q(t/s)/,,G the Euler update becomes 

$p+l) = &’ - p, (2.10) 

where 
f!X’ = &a’ + cvisw (2.11) 

and 
(vi; f&y = ‘,,. lP&& (2.12) 

It is instructive to study the Euler algorithm in free field theory, where it can be 
solved exactly. Neglecting internal indices and Fourier-transforming to momentum space 

@“’ = (I- EWyl$@ + fig (1 - cw’(p))A-P-l@, (2.13) 

where w’(p) = $J + ma, fi = 2 sin tp. Now consider the correlations in Langevin time, 
which express the speed of convergence and de-correlation of the algorithm. From 
eq. (2.13) one fmds 

(&+A) &6”‘) = (1 - “ws(pl))X (&) &6”‘) (2.14) 

where (0) denotes an average over the noise. Eq. (2.14) reveals many details of the 
performance of the Euler algorithm. First, taking the limit L + 0, n -+ co with t = rn 
fixed, one sees that the convergence and de-correlation of & occurs in time t.(p) = 
w-‘(p). Second, for finite c one sees that the algorithm is stable only if II- ews(p)l < I 
for all momenta. The most restrictive mode is the one with the largest momentum 
WL = 4dla= + ma. Once c is fixed by this ultraviolet mode, the infrared modes 
containing the interesting physics de-correlate in 

N.(p) = q.2 o[ $; y ) (2.15) 

steps of the algorithm. An important characteristic of simulation algorithrm is the 
critical dynamical exponent z, defined by NC o( a-’ as a + 0, because the number of 
steps of the algorithm needed to completely de-correlate 4 is determined by the largest 
NC. Typically z > 0, which means that more and more computation is needed to 
simulate field theories as the continuum limit is approached. This undesirable behavior 
is called critical slowing down. From eq. (2.15) one sees that I = 2 for the Euler 
algorithm. It will become clear in sects. 4, 6, and 8 that critical slowing down is closely 
related to the physical dimension of simulation time. Except for over-relaxation, cf. 
sect. 6.1, the algorithms considered here all obey I = -[t] (for free field theory). 

3 Discrete Fokker-Planck Equations 

One must now check that the probability distribution is correct as e + 0. It is also 
useful to work out the O(E) corrections to the distribution and develop a formalism for 
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checking that higher-order schemes are indeed higher order. To simplify notation this 
section’s equations are in lattice units, a = 1. 

Let the probability distribution at X be P(‘)[$]. The update of eq. (2.10) changes it 
to 

p(X+l) q+] = [ / [&‘] l--J S(#i - f#J; + ji) Pq$b’]. (. I > 
For SKIW.U c the &functions C~II be expended in powers of the drift force ji. Integrating 
over #’ yields the Kramers-Moyal expansion 

P(‘+l)[4] = P”‘[#] + 2 AVi, ’ ” Vi- (( ji, ’ ’ ’ fii.)Pcx’[4]) * 
n=l 

(3.2) 

Eq. (3.2) gives a (functional) differential equation for the equilibrium distribution. 
Working to second order in c 

(fi) =ESir 

(ji jj) = 2E6ij + E’SiSj, 

(fifjfk) =%’ (bjsk f 6jksi + 6kisj) I 

(fifjfkfl) = 4Ea (&j6kI f hk6jl + 6iI6jk)t 

using the abbreviation Si = V<S. 

(3.3) 

TO first order in E one obtains the Fokker-Planck equation 

P = Vi[(Si t Vi)P] (3.4) 

A change of variables P = eeS/‘P bringa eq. (3.4) into the form 

Sr = - (Si - Vi) (Si f Vi) Q =: -‘HIy. (3.5) 

In the space of 4 conf@uations, 7-f is self-adjoint and positive semi-definite. The unique 
zero-mode of ?f is e-‘/l. Hence, generic initial conditions converge to the equilibrium 
solution rY cc e-+ or P a ees. 

Now let us ana&e the next order in c. We are primarily interested in the equilibrium 
distribution, the solution to 

0 = Vi(Si + Vi)P t E {!ViVj(SiSjP) + ViV’(SiP) + fV’V’P}. (3.6) 

TO simplifyeq. (3.6) one repeatedly uses ViP = -S;P+O(e) inside the braces, obtaining 

0 = Vi[(Si + V,)P], (3.7) 

where 
S ZZ S + i 7 (2Sjj - Sj). 

3 
(3.8) 

Thus, the equilibrium distribution is P cx eeS, and Z? is called the equilibrium action. 
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In field theory the detailed form of the action is not the whole story, because of 
renormalization. Indeed, the terms in the equilibrium action proportional to s are just 
those appearing in improved lattice actions. For example, changing field variables 

changes the measure to 

and the action to 

& = I& + $ESi (3.9) 

[+I y [&I e+‘Cj %/’ (3.10) 

S[#] Y S[J] t ; g s;, (3.11) 
3 

up to O(L). Combining these two changes and writing [d&]P[q5] = [d@[& the proba- 

bility distribution 9 0: e-‘, where 

S=SticSjj. (3.12) 
, 

For polynomial actions this form mod&s the bare couplings but induces no new terms. 
In Euclidean lattice field theory the interesting and accessible quantities are spectra 

and matrix elements. Since eq. (3.9) is a change a variables, it does not change the 
spectrum. Moreover, any multi-linear observable is correct up to second order: 

/[&I O(J) e-’ = /[db] O(4) e-’ + O(r’), (3.13) 

SiIKX 

/ 
[d4] CJ..?, e-’ = -/[d4]V,(&e-“) =O. (3.14) 

Hence, a trivial shift in bare couplings and a change of variables suffices to remove O(s) 
terms from most interesting observables. 

4 The Detailed-Balance Universality Class 

The results of the previous section suggest that the non-aero step-size corrections do not 
affect physical predictions. Zirm-Justin has proven a theorem demonstrating the formal 
renormaliaability of stochastic quantisation [6, 41. The key ingredients of the proof are 
power counting, a BRST invariance, and a supersymmetry. This section examines how 
to adapt the arguments to analyze the non-zero step-size corrections to all orders. One 
iinds [7] that BRST invariance still holds, which guarantees that the time discretization 
introduces only irrelevant operators. Then the critical phenomena of Euler and related 
algorithms is universal. But the supersymmetry does not hold, so the Fokker-Planck 
equation is not necessarily integrable. However, the pattern of supersymmetry violation 
is simple, and it is likely restored in the continuum limit. If so, the universality class 
includes the continuous-time Langevin equation. 

The mathematical steps are a direct transcription of ref. [6]. Let us start with a 
general form of the dynamics, 

e,r = ~:,&I. (4.1) 
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The noise has a slightly different normalization than before 

(I&) = 0, (vi,1 “;,,) = E-l6t” a-ds,, P, (4.2) 

and the unit of time has been changed so that the step-size here is related to that of 
sects. 2 and 3 by E = 2s. The lattice spacing has been restored here, because we shall 
treat discrete space-time and discrete Langevin time on a similar footing. 

For convenience, let us introduce some notation. Greek letters will be used as a 
multi-index for space-time, internal indices, and Lange& time, viz. Q = (z, a, t). For 
discrete time one must distinguish forward, backward and symmetric time difference 
operators, 

a:4 = +4tt * =I - &(a, (4.3) 

and 

ap4 = I[@ + l ) - q5(f - l )]. 
2E (4.4) 

Note that ai’) = ;(8tf +a;). D o products, matrix products, or repeated Greek letters t 
imply 8 ummation over all elements of the multi-index and multiplication of the sum by 
Ed 1 e.g. 

J .$ = Jp& = cad c J&. (4.5) 
L1 

By analogy with eq. (2.4), the symbol V, = •‘a-~8/0$~(t). Finally, functional mea- 
sures in this section are, for example, [dv] = n, dv,. 

The generating functional for (dynamic) correlators of 4 is 

Z(J] = /[dt$][dv] 6(v - F[4]) det M eJ’&““, (4.6) 

where the matrix M is given by 

M,@ = VpFm. 

One represents the 6-function and determinant as functional integrals: 

S(Y - 7) = /[da ec’(“--p) 

with the contour of Cm along (-;a~, im), and 

(4.7) 

(4.6) 

det M = 
I 

[dc][dc] ewe, (4.9) 

where the ghosts (c) and anti-ghosts (E) anti-commute. Inserting eqs. (4.6) and (4.9) 
into eq. (4.6) and performing the (Gaussian) integral over Y yields 

Z(J] = /[db][dc] [dE](d[] e-S~BvesE9clfJ’d, 

where the dynamical action 

S[~,C,E,C]=-~C.C+C.~-~MC. (4.11) 
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There is a BRST transformation, 

$4, = Fcp 1 

Jc, = 0, 

bEa = &, 
(4.12) 

where f is an infinitesimal Grassman parameter. The terms of the dynamical action S 
transform as follows: 

a(-$.C)=o, 

b(C.F)=fcMc, (4.13) 

a(--EMc)= -[(CMc+~~V,V,&=~cyc,). 

The last term vanishes because V,Ve7, is symmetric under p e-1 7 whereas cge, is 
anti-symmetric. The two terms [MC cancel. Hence, the dynamical action is BRST- 
invariant. 

For the study of numerical algorithms a useful class of dynamics is given by 

6,t = s,j’ (@#m,t + fQjkSk,t) (4.14) 

and M defined through 7 by eq. (4.7). A Fokka-Planck analysis as in sect. 3 shows 
that this Langevin equation converges to the correct probabiity distribution, if Qs is 
positive definite and independent of #, and if b&Q1 - @) = 0. But we shall now 
apply the functional formalism to see what conclusions can be drawn for non-eero c. 

In the special case 7i,t = 19:4~ + !ViS (i.e. the Euler scheme) there is an additional 
approximate symmetry. For discrete time the additional transformation is 

6~2 = f.d - 28,(“4d, 

6&, = 0, 
(4.15) 

6Cp = 2B,(‘)r c P , 

for infinitesimal Grassman [. The terms of the dynamical action transform under 
eq. (4.15) as follows: 

6 (-if. C) = 2M,c”C (, 

6 (C .7) = ((ME t 2B,(‘)r. i=)t, (4.16) 

6(--EMc) = (--EMC t 2~~&)4)[. 

Substituting the expressions for 7 and M into eq. (4.16) and collecting all terms 

6s = 2~~ [S,g8,(‘)48 - &‘,] (. (4.17) 

7 



In a formal limit of continuous Langevin time the dynamical action is invariant, because 
&S, = S,&4p, from Leibniz’ rule. For interacting theories with discrete Langevin time 
it is not, but the residue is a “lattice artifact.” We shall return to this point after a 
discussion of renormalization. 

Ref. [6] shows how power counting and the BRST invariance restrict the structure 

of the counter-terms. For the Euler update, where the step-size has (momentum) di- 
mension [e] = -2 the dynamical fields have the dimensions [(I = f(d t 2), [4] = fr(d- 2) 
(as expected), and [E] f [c] = d. Renormaiieability means that counter-terms in S of 
dimension greater than d + 2 are not needed, and the BRST symmetry relates (-4 
terms to c-c ones. The argumentation can be translated into the language of lattice 
field theory as follows. Any dynamics 3 will have a relevant part of dimension + (d + 2) 
and any matrix l adM in the ghost action will have a relevant part of dimension 2. The 
BRST symmetry implies that the relevant parts of 3 and M are related by eq. (4.7). 
In other words, there is a whole universality class of Langevin algorithms with the same 
critical dynamics. This universality class includes more sophisticated discretizations of 
Langevin time, such as those in sect. 6. In particular, the physics does not depend on 
e, up to the stability requirements discussed in sect. 2. 

This conclusion is, perhaps, more easily digested by the following heuristic consid- 
eration. Restoring the lattice spacing, the Langevin step-size is e = &zs, by dimensional 
analysis. (The dimensionless number typed into the computer is K) Consider a se- 
quence of simulations with fixed z but the bare couplings of the static system (the 
model being simulated) tuned to approach the continuum limit (of space-time). Since 
simulation time is marked of in steps of <as, it seems to approach its continuum limit 
too. Hence, it is reasonable to guess that the non-sero step-size algorithms belong to 
the detailed-balance universality class, because the continuous Langevin equation obeys 
detailed balance. This universality class includes the Metropolis algorithm and other 
exact, local algorithms. 

To prove the conjecture one must verify the probability distribution at equilibrium. 
From the non-perturbative proofs that stochastic quantization converges to the correct 
probability distribution [g], one realiees that the supersymmetry plays an essential role. 
Therefore, let us return to the approximate symmetry in eqs. (4.15)-(4.17). Even for 
Langevin time discrete, it combines with the BRST transformation to form something 
like a super-algebra. The generators D and b (of 6 and f) satisfy D’ = 0, 6’ = 0 and 

(Do t BD)Q = 24’)9, (4.16) 

where Q is 4, c, E, or C. The right-hand-side is a discrete time-translation operator. 
Since &S is a lattice artifact, it should be possible to adapt the approach of ref. [9] to the 
supersymmetry of eqs. (4.12), (4.15) and (4.16). (Ref. [9] proved that supersymmetry 
could be restored in the d = 2 Wess-Zmnino model. The supersymmetry considered here 
is even simpler.) Assuming this strategy succeeds, the renormalised continuum limit of 
the dynamical theory is supersymmetric, and is the same as with detailed balance. 

5 Non-Abelian Spin and Gauge Systems 

In particle physics the most interesting field theories are non-Abelian gauge theories and 
chiral models. On the lattice the fundamental variables are Lie group elements defined 



on links (gauge theories) or sites (chiral models) of the lattice. The analysis of the 
previous sections can be adapted to non-Abel&m theories. The crucial ingredient is to 
define differentiation in the group manifold in a way consistent with partial integration 
over Haar measure. With such a definition of Vi, eq. (3.2) still holds. 

We shall concentrate on unitary groups and use the following conventions: The anti- 
Hermitian generators T” are nommlired by Tr(T”T*) = -$Pb. The structure constants 
are given by the commutation relations [?I”, Tb] = -f”bcTc. Let w” be small parameters 
and write w = w”T”. The derivative is defined by [lo] 

f(e”U) = f(U) t w”v-f(u) + O(d), (5.1) 

where f(V) is any function of the unitary matrix U. The most useful example is 

V’Tr(UV) = Tr(T”UV), V=Tr(VU+) = - Tr(VU+T”), (5.2) 

where V is independent of U. The derivatives do not commute (the Lie-group manifold 
is curved), [V”, Vb] = -pbcVe. The commutation relation is especially easy to verify 
fkm eq. (5.2). 

In field theory one must keep track of a collection of unitary-group degrees of free- 
dom. The commutation relation reads 

[VX,, qpl = -Pk~=&&w (5.3) 

for gauge fields, and .a similar expression without the labels p,v for spin fields. It is 
convenient to introduce a multi-index i = (a,=,~) for gauge fields and i = (a,~) for 
spin fields. In the following we shall concentrate on gauge fields. 

A Lmgevin update for non-Abel&m fields is given by 

u&+1’ = &-f&,~‘UW =,(l. (5.4) 

The Euler drift force is 
fi = & + cvis, (5.5) 

where 7; = ~2,~ are Gaussian random numbers with dispersion 2. 
The equilibrium action can be worked out just M in sect. 3, taking care that the Vi 

now longer commute. This leads to an new O(c) “ccmection” to the equilibrium action, 
which now reads 

S[U] = (1+ %) WI + ; c {2VjS[Ul- (vjs[ul)a}, (5.6) 
I 

where CA is the Casimir invariant of the adjoint representation (CA = N for SU(N)). 
The Sj term can again be absorbed into a change of variables, and for a simple plaquette 
action the remaining O(E) terms are absorbed into the bare couplings [Ill. For example, 
the shift in p of the Wilson action is 0 H p[l + s(C,/lZ - CF)], taking the shift 
from eq. (5.6) and the change of variables into account [ll]. Wilson loops are multi- 
linear, so that, after the change of variables, their expectations are correct up to O(c). 
Alternatively, one can correct a Wilson loop by a factor of 1 f eC~/4 per link. Note 
that this correction factor drops out of a Creutz ratio. 

The analysis of sect. 4 can also be extended to (pure) gauge theories. Once again, 
because [c] = -2, one expects that dynamical systems with different values of c belong 
to the same universality class, i.e. that renormalization washes out non-zero step-size 
effects. 
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6 Higher Order and “Hybrid” Algorithms 

For the systems considered so far, the effects of discrete Langevin time are analogous 
to lattice artifacts. However, it is still sometimes desirable to investigate discretizations 
that suppress them. For example, to find a non-trivial fixed point one must investigate 
the phase structure of the lattice theory; this may require more precise control over 
parameter-space than what the Euler update would allow. Also, in the following sections 
we shall investigate dynamics for which the renormalization theorem does not apply. 
For example, to eliminate critical slowing down, it is necessary to introduce dynamics 
with dimensionless time and, hence, different power counting. Furthermore, fermi&c 
systems are almost always treated by a “pseudo-fermion” fields whose interactions with 
scalar or gauge fields is non-local and non-polynomial. 

This section considers algorithms that are still approximate, but have smaller O(c) 
effects. Exact algorithms are considered in sect. 9. 

First, we shall consider the Rage-Kutta algorithm [12, lo]. The new configuration 
is obtained from the old one by 

with 
fi = Js7,li + Qc(l + !CCA) (SjA’ + S,!‘+“s)) 

where S(x+l/s) denotes the action evaluated using the tentative update 

(6.1) 

(6.3) 

where f is an Euler update with the mme noise as in i. Expanding S(x+‘ls) in powas 
of Jt and working out the changes to eqs. (3.3) and (3.6), one finds the equilibrium 
action coincides with the desired action up to terms of O(c’). 

Another update with O(9) accuracy is obtained by eq. (6.1) with 

fi = JElli + E(1 t &ECA)Si - fC3”CSijqj 
j 

(6.4) 

and no tentative update. For scalar or pure gauge theories eq. (6.4) has no advantage 
over the Runge-Kutta scheme, whichis easier to implement. However, the generalization 
when fermions are coupled in saves an expensive matrix inversion at each step. 

The standard hybrid stochastic algorithm can also be considered as an improved 
discretization of the Langevin equation. Consider the following update steps for scalar 
field theory: 

=i 
(M/N = *(W _ f6SpO) 

&J) = p1 + &p/~) 1 ’ 
(6.5) 

t 

where &oo) is Gaussian noise with unit dispersion, followed by a molecular dynamics 
[13] trajectory of N - 1 steps of 

=i 
(hn+W) = ,#,n-w _ 6S,!W 

i 

’ ,$jx?‘+l) = ,&s”’ f &4x’“+‘/2) I 
(6.6) 
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Finally, the new configuration is given by 

&+W = &NJ, (‘3.7) 

Eq. (6.6) is the leap-frog scheme for integrating Hamilton’s equations for Hamiltonian 
H = f Ci rt + S[C$] through the (?r, 4) phase space; eliminating r it is equivalent to the 
Verlet scheme for integrating a second-order ordinary differential equation. Eq. (6.5) is 
the occasional “refreshment” of the velocities needed to average over momentum. 

For N = 1 the hybrid update collapses to the Euler discretization of the Langeviu 
equation. The is the basis of the statement that “Langevin is a special case of hybrid.” 
For N = 2 the hybrid update is similar in structure to the Runge-Kutta update, but 
instead of O(G) accuracy the equilibrium action is given by eq. (3.8) with c = f6s. 
For arbitrary N the structure is similar to higher-order RuugoKutta schemes, but the 
equilibrium action is the same for all N. 

Again it is instructive to analyze the perfo-ce of these algorithms in free lattice 
field theory. In momentum space-the lea&g iteration can be worked out 

&f’s”) = ,@N’ = ~os~(N~w(~)) @’ + P 
Sinnr(N64P)) +o) 

W(P) 

where sinN and COsN are polynomial 8pproximations of sine and cosine: 

and 

N-l n-1 

side) = n~ot-1)n(2~;;)! _rl,’ - 
(m + 112 

Nl ’ 

N 

-“N(‘) = ngo(-l) 

The auto-correlation function is then 

(&a)&)) = coa~(N6w(pl)) (&)&‘) ) 

where (*) denotes an average over the every noise T(~J’). 
Let us consider two idealized limits. One is the “Langevin limit” 

N fixed, n-+ CO, 6 -+ 0, t = +~Nsbsfi~ed, 

and the other is the “molecular dynamics limit” 

n fixed, N-m, 6-0, T= N6Cxed. 

(6.8) 

(6.9) 

(6.10) 

(6.11) 

(6.12) 

(6.13) 

In the Lange& limit, cos~(N6w) -+ e--Lws and the dynamics de-correlates as any 

Langevin dynamics. In particular, L = 2. In the molecular dynamics limit coss(N6w) - 
coP(w7). Ifwr small this limit differs little from the Laugevin limit, and in particular 
the computation needed to de-correlate the slow modes is about as much as with the 
Euler update. If one tries to make the trajectory length longer, a problem arises because 
there is a spread of frequencies in field theory. For 7 > 2x/w,,,, almost every choice of 
7 coincides with a multiple of ~lm/w(p) f or sane p and n [14]. This is a piece of bad 
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luck, because such a mode never de-correlates. As the physical volume of the system 
increases the density of modes increases until 7 has nothing but bad luck at all. Under 
these circumstances it is difficult to define z sensibly. 

It is safe to say that an important attraction of the hybrid algorithm was the claim 
that it had z = 1 because the time parameter of the trajectories had (momentum) 
dimension [T] = [a] = -1. However, numerical studies have shown that the optimal 
trajectory length is r.,,t N r/Zw,,, in accord with the above remarks. Therefore, 
the fast, ultraviolet modes de-correlate in one trajectory, but the slow, infrared modes 
de-correlate as in usual Langevin dynamics. For the standard hybrid algorithm the 
short, fixed trajectory length chosen makes it nothing but an elaborate discretization 
of the Langevin equation, with step-size c’ = 4~‘. This step-size is larger than in the 
Euler algorithm (for equal step-size error), but nevertheless the stochastic process has 
dynamical critical exponent z = 2. When step-size errors matter, it is not clear which 
discretization of the Langevin equation is preferable, hybrid or Runge-Kutta, when all 
aspects of the computation are considered. 

The trajectory length can be increased to roughly 2x/w& if its length varied from 
trajectory to trajectory [14]. Remarkably, this solution is (in element of the original 
hybrid algorithm (151, in which the trajectory length N was to be chosen with probability 
(1 - P~)N. Then, although any given mode has bad luck ocursiomlly, most of the 
trajectories de-correlate it. With variable trajectory length and the option to select my 
configuration &“) for the ensemble, the stochastic process is no longer in the detailed- 
balance universality class. In particular, the proof of convergence must be modilied 
[16, 171 and the formalism of sect. 4 does not apply. Nevertheless, the equilibrium 
action is still given by eq. (3.8) (or eq. (5.6) for gauge theories) with E = +Sz [17]. An 
individual harmonic oscillator has auto-correlation time 7, = 2/P, provided P 5 2w 
[15]. For free field theory it is then easy to see that choosing P = 2~ de-correlates all 
modes in (molecular dynamics) time rc = ~2. As in standard Langevin the maximum 
step-size is set by stability of the ultraviolet modes. Given this step-size, the number of 
sweeps needed to de-correlate the intrared modes is 

The dynamical critical exponent has been reduced to I = 1, because for random tra- 
jectory lengths, the parameters can be chosen 80 that CPU time b molecular dynamics 
time. 

7 Including Fermions 

The previous sections considered systems with bosonic degrees of freedom only. This 
section treats algorithms for fermionic degrees of freedom. 

Fist note that the fermions’ part of the action can always be formulated in a 
quadratic form. Then 

J 
[d+][d$]e”“c”[u’* = det M[CT], (7.1) 

where U denotes gauge fields interacting with the fermions. For QCD, M[U] is a lattice 
version of p + m, so it is not real. The standard remedy is to introduce a second flavor 
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of fermion and introduce a complex field [la]: 

det M[CI] det M[U] = det Mt[U] det M[U] = /[dp]e-‘pf, (7.2) 

where S,r = q’(Mt[(l]M[U])-‘rp, and p is often called the pseudo-fermion field. Since 
Mt = y&f78 the pseudo-fermion action can be written 

Spf = ‘p+M;2% (7.3) 

where Ms = y&f. Below these details are less important the the form of the action in 
eq. (7.3), so the subscript 5 will be dropped. 

The Euler update for the pseudo-fermion is [19, 111 

vplx+1) = (b ” - s,A.f;‘) $’ + p-& 

where i is a multi-index for space-time, color, and spin indices of p, and the Gaussian 
noise has dispersion ((‘0 = 2. The drift force of a gauge field coupled to the fermion is 
augmented by a new term 

ji C ji - l?~+M-8(ViM-8)M-8~* (7.5) 

Notice that the step-sizes 8q and 8 appearing in the fermion and gauge updates need 
not be the same. 

These dynamics suffer from a peculiar critical slowing down. The eigenvalues of Ma 
for free Wilson fermions are p(p) = sin’(po)/a8 + (m + ta@8)8. The fastest modes in 
eq. (7.4) are the low momentum modes, a-*(O) = m-8, and their stability restrict8 the 
magnitude of cy. The auto-correlation length of the high momentum modes is long, 
t. = (m + 2d/a)l, and consequently they de-correlate in N, (x (am)-8 sweeps. 

However, it is easy to eliminate this critical slowing entirely. Consider eq. (4.14) 
with Q = Q = M, i.e. 

~p!~+‘) = (1 - 8c)py) + Mij&[j, (7.6) 

and ([‘[) = 2 - bp. One can show from the Fokker-Planck equation (or BRST tech- 
niques!) that the equilibrium distribution of p is correct to all orders in c~, with this 
modilication in the noise. One can even set c* = 1, in which case the fermion field 
de-correlates immediately [ll]. Then the gauge-field drii force is augmented by the 
bilinear noise term 

fi m fi - 4+Aitv 

where & = M-‘(Vi&f-‘)M-‘9 and ((‘0 = 1. 

(7.7) 

The bilinear noise algorithm of eq. (7.7) can be extended to a higher-order scheme 
using variations of the Runge-Kutta technique [20,21]. However, there is a complication. 
Terms of the form (~‘Ai~E’dj~) mak e 1 impossible to integrate the Fokker-Planck ‘t 
equation. Unfortunately, the higher-order step-size errors in procedures that remove 
the non-integrable terms are proportional to the volume [22]. Hence, even though the 
error is formally higher-order, the step-size must be chosen to be smaller. On the other 
hand, numerical work [22] indicates that the non-integrable terms make only a small 
contribution to observables, and it is less harmful to leave them in. 
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In combining the fermion updates into hybrid algorithms, several approaches are 
possible. One can leave ‘p = Mt fixed during the gauge-trajectory, update (o for fixed [, 
or generate a new 6 at each step of the trajectory. For an analysis of these possibilities, 
see ref. [23]. 

8 Accelerating the Dynamics 

In free field theory the original hybrid algorithm ameliorates, but does not eliminate, 
critical slowing down. This section uses the Langevin equation to explore two other 
ways to attack the problem, over-relaxation and Fourier acceleration. In the former 
case the Langevin equation is used as 8 pedagogical took most implementations rely on 
other algorithms. In the latter, however, stochastic dif5xem.e equations are essential. 

The name of the game is to accelerate the dynamics of the slow modes and thereby 
reduce the critical dynamical exponent. It can be determined analytically in free field 
theory, but reliable determinations for strongly interscting SySteZLU are extremely dif- 
ficult. For four-dimensional interacting systems, such aa QCD, it hss not yet proven 
feasible to quote I with Sensible error estimates. 

8.1 Over-relaxation 

Let us first consider over-relaxation [24]. The original formul8tion and most practical 
implementations do not look much like the Langevin equetion. It is, however, pO88ible 
to m-cast it into this form [25]. Imagine two harmonic oscibtors, i.e. action S = 
fw:$: + fw;& A L angevin equation with the properties of over-relaration is 

($h)-( -j;;; g$) ($;)+m(;); (8.1) 
the Lmgevin dynamics couples the two modes together. More generally, 

& = -(CO866ij + SheCij)sj + -vi, (W 

SO the mode-coupling term drops out of the Fokker-Planck equation. (Here ~ij is the anti- 
symmetric tensor.) Hence, eq. (8.1) generates configurations with the correct probability 
distribution, if cm f,J > 0. 

The eigenvalues of the matrix in eq. (8.1) dictate convergence. They are 

Y+ = ;(W: + W;) KM e k ;,/(W: - W;)’ - (Wf t W:)’ Sin’ e (8.3) 

Clearly, if 

(5.4) 

the eigenvalues form a complex conjugate pair with Rev* 6 WIW~. The off-diagonal 
coupling in eq. (8.1) accelerates the slow mode at the expense of decelerating the fast 
mode. J.n free lattice field theory w’(p) = ji’ + d, and a typical strategy couples a 
mode with momentum p to one with momentum P = (r + p~,r + h, . ..). Then pa = 
4d/a’ -fi’. The angle 0 is chosen so that eq. (8.4) holds for all p. For example, choosing 
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sin0 = zd/(2d + a2mz) one find8 ~-l(p) = R e Y* = (m/a)d4d + a%9 independent 
of p. In typical implementations a dimensionless step-size is fixed. Hence, the de- 
correlation time measured in sweeps is NC cx (am)-I. Like the original hybrid scheme, 
over-relaxation reduces the dynamical critical exponent to z = 1, but does not eliminate 
critical slowing down completely. 

8.2 Fourier Acceleration 

In free lattice field theory Langevia updating can be studied exactly in momentum 
space, cf. sect. 2. This analysis shows why the usual dynamics have E = 2. It also 
suggest8 a remedy. In eq. (2.13), instead of taking the step-size independent of p, one 
could just as well take E(P) = E/d(p). This is Fourier acceleration [26, 111. The natural 
time step is now 6, which is dimensionless, so (for free field theory) it is easy to see that 
all modes de-correlate on the same time scale, aad that that time scale is independent 
of a. This would eliminate critical slowing down at the theoretical level. The more 
relevant standard of SucceSS is computation. Fortunately, the cost of the fast Fourier 
transform (FFT) algorithm increases only as V log V. 

For interacting theories the central question is the tolerable value of E. In position 
space 8 becomes non-local, s = EQ&, where 

sip &G-d 

Q~=/~J9+mD. 
To leading order in E the equilibrium action becomes [Ill 

(8.5) 

These interactions can be made local by introducing a new field C with kinetic term 
fC(A + ms)C ad &-C interactions ci5’i aad [iSij(j with COUphgS proportional to 5. 
With a local field theory, familiar techniques can be used to predict the form of C inter- 
actions on physical quantities. (It is difficult to det ermine their size, except that they 
are proportional to 8.) Once the form is known, the step-size errors can be eliminated 
by extrapolating-in essence one takes the contimmm limit of Langevin time explicitly. 

The field theoretic mdySi8 can proceed from eq. (8.6), or one can use the formalism 
of sect. 4. Starting from the dynamical action in eq. (4.11), it is convenient to change 
variables C H CQ-’ and E H EQ-‘, to make the theory local. The algebraic form of the 
BRST transformation does not change, so it can be used to derive identities relating 
different quantities, e.g. correlators with and without cs and ghosts. In particular, the 
C field has space-time interactions; it is the same field as ia the previous paragraph. 

If predictions of the 8 dependence are not reliable enough to extrapolate, general- 
izations of the Runge-Kutta method are available [ll], even when fermions are included 
[ZO, 211. However, while Range-Kutta processes render the step-size errors O(E~), the 
remaining errors are too cumbersome to analyze conveniently. 

A complication arises for non-Abelian gauge theories. The eigenvalues of the co- 
variant (lattice) Laplacian are approximately labeled by momentum only in a smooth 
gauge. Consequently, it is necessary to ft the gauge before applying Fourier accel- 
eration, which makes Qs implicitly field-dependent. An alternative, using covariant 
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derivatives in the definition of Q*, makes it explicitly field-dependent. Either method 
changes the Fokker-Planck equation at leading order. The first two moments in eq. (3.3) 
become 

(fi) =cQQtsj, 
(fifj) = 25Qfj. 

(8.7) 

The Fokker-Plamk equation is then 

P = ViQfj [ (Sj + Q~;~VIQ:I) + Vjp] W) 

which equilibrates to the wrong distribution. This must be repaired by replacing Sj 
with Sj - VI log Q:, in the drift force. In practice, the repair is implemented using a 
stocheatic estimator, cf. ref. [27]. 

9 Exact Algorithms 

For system8 with fermions, e.g. QCD, the non-zero step-size errors can alter physical 
results. Although the effects can be analyzed, the analysis is not especially straightfor- 
ward, because the pseudo-fermions interact non-locally. For Fourier accelerated alge 
rithms, the step-size errors are easier to analyze, because the algorithm can be re-cest BII 
a local theory. In both cases, however, an exact algorithm is desirable. Even for models 
where renormalization is thought to wash out step-size effects, most people would prefer 
an exact algorithm, at least for psychological reasons. 

There is an exact algorithm, well-suited to QCD, called the hybrid Monte Carlo 
[28]. It is based on the hybrid scheme discussed in sect. 6, but configurations are 
accepted or rejected according to .s Metropolis test. The secret is to apply the test to 
a[*,$] = fr’+ S[b], rather than to S[6] al one. Starting with the coniigurstion #(Xso)r 
the Steps are 88 follows: 

1. Generate rcA1.‘) from a Gaussian distribution e-f ‘*’ . 

2. Carry out eq. (6.5) and N - 1 steps of eq. (6.6). 

3. Bring x up to the same (molecular dynamics) time as & 

*i 
(hV = JW-W _ q&Z+). 

I I I (9.1) 

4. Make the substitution #(x+1*o) = $(X-N) with probability min (1, eeAn), where 

AH := fl(A,N) - H(xno); otherwise 4(x+1,o) = ,$(a,o) unchanged. 

When the process is iterated the configurations labeled &*“) have the desired probs- 
bility distribution P = eeS. As in sect. 6, an improvement is to randomiae the value of 
N in step 2 [14]. 

The hybrid Monte Carlo algorithm has become the algorithm of choice in numerical 
simulations of full QCD. As such it warrants a review of its own, but that is beyond the 
scope of a set of articles on stochastic quantimtion. For a review see ref. [29]. To give 
fair comparison to the other algorithms, however, let us work out the critical dynamical 
exponent (for free field theory). The number of trajectories needed to de-correlate the 
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slow modes is N, o( (T opt~min)-a and the amount of computation in a trajectory is 
proportional to N = r&b. Therefore, the total amount of computation needed to 
de-correlate the slow modes is 

N, = N,N cx 
1 r,,toc 4nu 

T&,& 6 r&J& ’ 
(9.2) 

she Lb,, X 1 for stability of the molecular dynamics trajectory. For a fixed tra- 
jectories of length 7opt N u&, one sees that N, o( (~rn)-~, i.e. z = 2. Similarly, for 
trajectories of variable length with mean 7opt N w& critical slowing down is less severe, 
andz=l. 

Hybrid Monte Carlo has an additional source of slowing down in the infinite volume 
limit with lattice spacing fixed. A leap-frog trajectory drifts off the energy shell by an 
amount of size (301 AH = Cfi6lf fC’V6’ +. . +. Consequently, one must reduce the 
step-size an 6 o( V-l/‘, otherwise the Metropolis test in step 4 rejects almost every tra- 
jectory. This inlinite volume slowing down can be alleviated by higher-order integration 
schemes. Since the number of degrees of freedom increases in the continuum limit too, 
this characteristic could affect the values given for I in free field theory. 

For QCD hybrid Monte Carlo, with random trajectories and some of the other 
ideas proposed in ref. [al], seems to be the algorithm of the near future. In practice the 
approach to the lattice-spacing and volume limits is restricted by computer memory. Aa 
a four-dimensional theory, QCD has enormous memory demands, so with only moderate 
critical slowing down and despite some infinite-volume slowing down, an appropriately 
tuned hybrid Monte Carlo should be adequate. 
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